THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010G University Mathematics 2014-2015

Suggested Solution to Test 1

1. (a) $\lim _{n \rightarrow \infty} \frac{5 n^{2}-1}{n^{2}-3 n+2}=\lim _{n \rightarrow \infty} \frac{5-\frac{1}{n^{2}}}{1-\frac{3}{n}+\frac{2}{n^{2}}}=5$
(b) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{n+2}=\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{2 n}\right)^{2 n}\right]^{1 / 2} \cdot\left(1+\frac{1}{2 n}\right)^{2}=e^{1 / 2} \cdot 1=e^{1 / 2}$
2. Note that $\frac{1}{\sqrt[3]{n^{3}+n}} \leq \frac{1}{\sqrt[3]{n^{3}+i}} \leq \frac{1}{\sqrt[3]{n^{3}}}=\frac{1}{n}$ for all $1 \leq i \leq n$, so we have

$$
\frac{1}{\sqrt[3]{n^{3}+n}} \cdot n \leq \frac{1}{\sqrt[3]{n^{3}+1}}+\frac{1}{\sqrt[3]{n^{3}+2}}+\cdots+\frac{1}{\sqrt[3]{n^{3}+n}} \leq \frac{1}{n} \cdot n=1
$$

Note that $\lim _{n \rightarrow \infty} \frac{n}{\sqrt[3]{n^{3}+n}}=1$. By sandwich theorem,

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n^{3}+1}}+\frac{1}{\sqrt[3]{n^{3}+2}}+\cdots+\frac{1}{\sqrt[3]{n^{3}+n}}=1
$$

3. (a) $\lim _{x \rightarrow 0} \frac{\tan 3 x}{x}=\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \cdot \frac{3}{\cos 3 x}=1 \cdot 3=3$
(b) $\lim _{x \rightarrow+\infty} \frac{e^{x+1}+e^{-(x+1)}}{e^{x-1}-e^{-(x+1)}}=\lim _{x \rightarrow+\infty} \frac{e+e^{-2 x-1}}{e^{-1}-e^{-2 x-1}}=e^{2}$
(c) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{4 x^{2}-x+1}}=\lim _{x \rightarrow-\infty} \frac{1}{\frac{1}{x} \sqrt{4 x^{2}-x+1}}=\lim _{x \rightarrow-\infty} \frac{1}{-\sqrt{4-\frac{1}{x}+\frac{1}{x^{2}}}}=-\frac{1}{2}$
4. (a) $\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{2}-0}{h}=0$ and $\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{0-0}{h}=0$. Therefore, $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$ exists and equals to 0 , that means f is differentiable at $x=0$ and $f^{\prime}(0)=0$.
(b) If $x>0, f^{\prime}(x)=2 x$. If $x<0, f^{\prime}(x)=0$. Combine them with the result in (a), we have

$$
f^{\prime}(x)=\left\{\begin{array}{ccc}
2 x & \text { if } & x \geq 0 \\
0 & \text { if } & x<0
\end{array}\right.
$$

We have $\lim _{h \rightarrow 0^{+}} \frac{f^{\prime}(0+h)-f^{\prime}(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{2 h}{h}=2$, but $\lim _{h \rightarrow 0^{-}} \frac{f^{\prime}(0+h)-f^{\prime}(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{0-0}{h}=$
0. Therefore, $\lim _{h \rightarrow 0} \frac{f^{\prime}(0+h)-f^{\prime}(0)}{h}$ does not exists, i.e. f^{\prime} is not differentiable at $x=0$.
5. Let $f(x)=x^{n}$, so f is differentiable everywhere.

If $x>y>0$, by Mean Value Theorem, there exists $c \in(y, x)$ such that

$$
\begin{aligned}
\frac{f(x)-f(y)}{x-y} & =f^{\prime}(c) \\
x^{n}-y^{n} & =n c^{n-1}(x-y)
\end{aligned}
$$

Note that $x>c>y$, so $x^{n-1} \geq c^{n-1} \geq y^{n-1}$, and we have

$$
n y^{n-1}(x-y) \leq x^{n}-y^{n} \leq n x^{n-1}(x-y)
$$

6. (a) i. Put $x=y=0$, we have $f(0)=[f(0)]^{2}$, so $f(0)=0$ or 1 . If we put 0 to the inequality in the second condition, we have $1 \leq f(0)$, so $f(0)=1$.
ii. If $x>0$, by the inequality in the second condition, we have

$$
f(x) \geq 1+x>1
$$

iii. If $x<0$, then

$$
1=f(0)=f(x-x)=f(x) f(-x)
$$

Therefore, $f(x)=\frac{1}{f(-x)}>0$.
If $a>b$, then

$$
\begin{aligned}
f(a)-f(b) & =f(b+(a-b))-f(b) \\
& =f(b) f(a-b)-f(b) \\
& =f(b)(f(a-b)-1) \\
& >0
\end{aligned}
$$

Note: $a-b>0$, so $f(a-b)>1$.
(b) We put h to the inequality in the second condition, we have

$$
1+h \leq f(h) \leq 1+h f(h)
$$

Also, $f(h) \leq 1+h f(h)$ implies that $f(h) \leq \frac{1}{1-h}$ if $h<1$.
Therefore, when $h<1$,

$$
1+h \leq f(h) \leq \frac{1}{1-h}
$$

Note that $\lim _{h \rightarrow 0} 1+h=\lim _{h \rightarrow 0} \frac{1}{1-h}=1$, so by sandwich theorem, we have

$$
\lim _{h \rightarrow 0} f(h)=1=f(0)
$$

which implies f is continuous at $x=0$.
(c) From the inequality in the second condition, we have

$$
\begin{aligned}
1+h & \leq f(h) & & \leq 1+h f(h) \\
h & \leq f(h)-1 & & \leq h f(h)
\end{aligned}
$$

If $h>0$, we have $1 \leq \frac{f(h)-1}{h} \leq f(h)$ so by sandwich theorem, we have

$$
\lim _{h \rightarrow 0^{+}} \frac{f(h)-1}{h}=1 .
$$

Similarly, if $h<0$, we have $1 \geq \frac{f(h)-1}{h} \geq f(h)$ so by sandwich theorem, we have

$$
\lim _{h \rightarrow 0^{-}} \frac{f(h)-1}{h}=1 .
$$

Therefore, $\lim _{h \rightarrow 0} \frac{f(h)-1}{h}=1$.

Now, we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} & =\lim _{h \rightarrow 0} f(0) \cdot \frac{f(h)-1}{h} \\
& =1
\end{aligned}
$$

which implies that f is differentiable at $x=0$ and $f^{\prime}(0)=1$.

